Spectral properties of certain tridiagonal matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral properties of certain tridiagonal matrices

We study spectral properties of irreducible tridiagonal k−Toeplitz matrices and certain matrices which arise as perturbations of them.

متن کامل

The Spectral Decomposition of Some Tridiagonal Matrices

Some properties of near-Toeplitz tridiagonal matrices with specific perturbations in the first and last main diagonal entries are considered. Applying the relation between the determinant and Chebyshev polynomial of the second kind, we first give the explicit expressions of determinant and characteristic polynomial, then eigenvalues are shown by finding the roots of the characteristic polynomia...

متن کامل

Reconstruction of tridiagonal matrices from spectral data

Jacobi matrices are parametrized by their eigenvalues and norming constants (first coordinates of normalized eigenvectors): this coordinate system breaks down at reducible tridiagonal matrices. The set of real symmetric tridiagonal matrices with prescribed simple spectrum is a compact manifold, admitting an open covering by open dense sets Uπ Λ centered at diagonal matrices Λπ , where π spans t...

متن کامل

Positive integer powers of certain complex tridiagonal matrices

In this paper, we firstly present a general expression for the entries of the th r   N r power of certain -square n are complex tridiagonal matrix, in terms of the Chebyshev polynomials of the first kind. Secondly, we obtain two complex factorizations for Fibonacci and Pell numbers. We also give some Maple 13 procedures in order to verify our calculations.

متن کامل

Tridiagonal Toeplitz matrices: properties and novel applications

1 Dipartimento di Matematica “Guido Castelnuovo”, SAPIENZA Università di Roma, P.le A. Moro, 2, I-00185 Roma, Italy. E-mail: [email protected]. Research supported by a grant from SAPIENZA Università di Roma. 2 Dipartimento di Matematica “Guido Castelnuovo”, SAPIENZA Università di Roma, P.le A. Moro, 2, I-00185 Roma, Italy. E-mail: [email protected]. 3 Department of Mathematic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2012

ISSN: 0024-3795

DOI: 10.1016/j.laa.2011.07.040